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Equivalence between the formulas
for inductance calculation

Marcelo Bueno and A.K.T. Assis

Abstract: We demonstrate the equivalence for the self-inductance of closed circuits, with the
formulas of Neumann, Weber, Maxwell, and Graneau.

Résuḿe: Nous démontrons que les formules de Neuman, Weber, Maxwell et Graneau
donnent la m̂eme self-inductance pour des circuits fermés.
[Traduit par la ŕedaction]

1. Introduction

The concept of inductance arises naturally when studying the interaction energy between current-
carrying circuits. This interaction energy has a factor that depends only on the geometry of the
circuits. When we analyze the self-energy of a single circuit, this factor is called self-inductance;
when we analyze the interaction energy of two distinct circuits, it is called mutual inductance.

With the theoretical development of electrodynamics three main formulas appeared to calculate
inductance: the expressions of Neumann, Weber, and Maxwell. Recently, a new formula can be
deduced from Graneau’s work.

Our goal is to demonstrate the equivalence between these formulas for the self-inductance of a
closed circuit. This equivalence is a known fact for the mutual inductance of two separate closed
circuits [1], but there is no demonstration for a single closed circuit.

The demonstration we shall present here is a generalization of the equivalence we have recently
shown in some specific configurations [2].

2. Inductance formulas

2.1. Neumann’s formula
To explain Faraday’s law of inductance with Amp̀ere’s force [3], Neumann introduced the concepts
of vector potential and mutual inductance. Consider two closed circuits�4 and�5 carrying currents
L4 andL5, respectively, Fig. 1. A current element of the circuit�4 is L4go~, and a current element of
the circuit�5 is L5go�. They are located, respectively, ato~ ando�.

The magnetic interaction energyXQ45, between the circuits�4 and�5, derived by Neumann, is
given by
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L4L5

L
�
4

L
�
5

go~ � go�
u~�

(1)

where�3 � 7� � 43�: kg m C�5 andu~� � mo~ � o�m.
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Fig. 1. Two closed circuits K� and K2 with currents U� and U2. The current element U�_U= is located at U= while
U2_UH is located at UH.

We can write the energy XQ45 as L4L5P
Q
45, where PQ

45 is the geometric coefficient called the
mutual inductance. Therefore, it follows from (1) that
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(2)

2.2. Weber’s formula
Through Weber’s force we can derive an interaction energyXZ45 , for the circuits�4 and�5, following
the same reasoning shown in Sect. 2.1 [4, 5]. If we writeXZ45 asL4L5PZ

45 , we obtain the coefficient
of mutual inductancePZ

45 , in Weber’s electrodynamics:
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2.3. Maxwell’s formula
In classical electrodynamics we utilize Darwin’s energy [6] to obtain the interaction energyXP45 �
L4L5P

P
45 . The formula for the coefficient of mutual inductancePP

45 is [7, 8]
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2.4. Graneau’s formula
In his book, ref. 9, p. 212, Graneau defined an electrodynamic energy g5Y J

~� between current elements.
Integrating for closed circuits we obtain the interaction energy XJ

45 � L4L5P
J
45. This results in
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Analogous to Helmholtz’s procedure [3, 7, 8, 10], these expressions for the mutual energy between
two closed circuits can be written asX45 @ L4L5P45, with
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Fig. 2. (@) Circuit K of thickness /, length � and carrying an uniform and constant current U. (K) � circuits K=

dividing K. (S) Circuit K= of thickness /= and carrying an uniform current U=  U/=*�.
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where P45 @ PQ
45 for n @ 4, P45 @ PZ

45 for n @ �4, and P45 @ PP
45 for n @ 3, P45 @ PJ

45

for n @ �8.
Changing the variables of integration in (6) we obtain P54 @ P45, for all formulas.

3. Generic proof of equivalence

As we want to prove the equivalence of the four formulas presented above when calculating the self-
inductance of a single closed circuit, we cannot use the model of a linear current element. Expression
(6) is not well defined when �4 coincides with �5. To overcome this difficulty we have to change
the linear-current element to a surface- or volume-current element.

We now demonstrate the equivalence between the formulas of self-inductance given by Neumann,
Weber, Maxwell, and Graneau. First, consider the circuit � described in Fig. 2d. We suppose this
circuit to be composed of surface-current elements. The thickness of the circuit is $. We divide �
into Q circuits �~ with thicknesses $~ and carrying currents L~, in such a way that $ @

SQ
~@4 $~,

L~ @ L$~@$ (Figs. 2e and 2f). We choose a large Q to make $~ � $ and $~ � c (c is the length of
�).
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Fig. 3. (@) Circuit K= with thickness /= and carrying current U=. K Circuit K= replaced by � rectangular circuits
K=H (� ' �c ���c� ), each carrying a current U= in the same direction as K=.

The self-inductance O� of the circuit �, in Figs. 2d and 2e, can be written as3
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where V� is the surface of the circuit �. To arrive at (7) we defined O�
q
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Now, we approximate the circuit �~, in Fig. 2f, by P rectangular closed circuits �~� with currents

L~, in the same direction as in �~ (Figs. 3d and 3e). This approximation can be improved to any desired
degree by decreasing the rectangle’s areas and increasing their numberP accordingly . We can write
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(8)

The self-inductanceO�
~�

of the rectangle�~� can be calculated with the geometry of Fig. 4.
As we have surface-current elements in the rectangle of Fig. 4, we have to make use of the

equivalenceLgo ' ggd in expressions (3) to (6), whereg is the surface-current density (mgm @
L@$~) and gd is the area element. Calculating the integrals [2], supposing$~ � c4 and$~ � c5,
yields (neglecting terms of the orders+$~@c4,6, +$~@c5,6, and above)
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(9)

3 With this definition, the self-energy of the circuit K is U2uK*2.
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Fig. 4. Rectangular closed circuit K=H with sides �� and �2, thickness /=, and current U .

This is a very important result. It shows that for the closed circuit of Fig. 4, we have the
same coefficient of self-inductance according to the expressions of Neumann, Weber, Maxwell, and
Graneau.

The circuits �~� and �~n of Fig. 3e are two distinct closed circuits, with � 9@ n. Therefore,
PQ
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[1]. This fact, and the equivalence in (9) substituted in
(8), shows that for the circuit �~ of Fig. 2f,
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(two distinct closed circuits of Fig. 2e) we finally obtain
from (7), with the equivalence in (10),

OQ� @ OZ� @ OP� @ OJ� (11)

This is the proof of equivalence between the expressions of Neumann, Weber, Maxwell, and
Graneau obtained utilizing a generic circuit � with surface-current elements (Fig. 2d). Instead, we
could have utilized a circuit � with volume-current elements. The demonstration of the equivalence
in this case follows the same reasoning presented above. It is only necessary to calculate the self-
inductance of the rectangular closed circuit with volume-current elements, analogous to the one
presented in Fig. 4 with surface-current elements. With the same dimensions as in Fig. 4, but now
with the square cross section of sides $~, and utilizing the equivalence Lgo ' agY +a is the volume-
current density, ma m @ L@$5~ , and gY is the volume element) in (3) to (6), we obtain [2] (supposing
$~ � c4, $~ � c5 and neglecting terms of the orders +$~@c4,

6, +$~@c5,6 and above)
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As in expression (9), the same coefficient of self-induction is obtained according to the expressions
of Neumann, Weber, Maxwell, and Graneau.
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4. Conclusions

The fact that the mutual inductance of two separate closed circuits is the same according to the
formulas of Neumann, (2), Weber, (3), Maxwell, (4), and Graneau, (5), has been known for a long
time [1]. We conclude in this work that this result remains valid even when we are calculating the
self-inductance of a single closed circuit.

Therefore, there is no distinction between these formulas when dealing with closed circuits.
In some situations it is easier to calculate the force between closed circuits (or between a closed

circuit and a part of itself) by deriving it from the inductance (see ref. 9, p. 204, and refs. 11 and
12) not calculating it directly by means of Amp‘ere’s force or Grassmann’s force. Thus, the fact that
the self-inductance with Maxwell’s formula and Weber’s formula is the same implies that classical
electrodynamics (Grassmann’s force) and Weber’s electrodynamics (Ampère’s force) agree as regards
the resultant force in closed circuits [13–16].
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